Urine Reagent Strips (3 Parameters) (€ For rapid detection of multiple analytes in human urine. IVD For in vitro diagnostic use only ### **INTENDED USE** Urine Reagent Strips are firm plastic strips onto which several separate reagent areas are affixed. The test is for the detection of one or more of the following analytes in urine: Leukocytes, Blood, and Nitrite. # **SUMMERY** Urine undergoes many changes during states of disease or body dysfunction before blood composition is altered to a significant extent. Urinalysis is a useful procedure as an indicator of health or disease, and as such, is a part of routine health screening. Urine Reagent Strips can be used in general evaluation of health, and aids in the diagnosis and monitoring of metabolic or systemic diseases that affect kidney function, endocrine disorders and diseases or disorders of the urinary tract.1,2 # PRINCIPLE AND EXPECTED VALUES **Leukocytes:** This test reveals the presence of granulocyte esterases. The esterases cleave a derivatized pyrazole amino acid ester to liberate derivatized hydroxy pyrazole. This pyrazole then reacts with a diazonium salt to produce a beige-pink to purple color. Normal urine specimens generally yield negative results. Trace results may be of questionable clinical significance. When trace results occur, it is recommended to retest using a fresh specimen from the same patient. Repeated trace and positive results are of clinical significance. **Blood:** This test is based on the peroxidase-like activity of hemoglobin which catalyzes the reaction of diisopropylbenzene dihydroperoxide and 3,3',5,5'-tetramethylbenzidine. The resulting color ranges from orange to green to dark blue. Any green spots or green color development on the reagent area within 60 seconds is significant and the urine specimen should be examined further. Blood is often, but not invariably, found in the urine of menstruating females. The significance of a trace reading varies among patients and clinical judgment is required in these specimens. **Nitrite:** This test depends upon the conversion of nitrate to nitrite by the action of Gram-negative bacteria in the urine. In an acidic medium, nitrite in the urine reacts with p-arsanilic acid to form a diazonium compound. The diazonium compound in turn couples with 1 N-(1-naphthyl)- ethylenediamine to produce a pink color. Nitrite is not detectable in normal urine. The nitrite area will be positive in some cases of infection, depending on how long the urine specimens were retained in the bladder prior to collection. Retrieval of positive cases with the nitrite test ranges from as low as 40% in cases where little bladder incubation occurred, to as high as approximately 80% in cases where bladder incubation took place for at least 4 hours. ### REAGENTS AND PERFORMANCE CHARACTERISTICS Based on the dry weight at the time of impregnation, the concentrations given may vary within manufacturing tolerances. The following table below indicates read times and performance characteristics for each parameter. | Reagent | Read | Composition | Description | |----------------------------|----------------|--|---| | | Time | | | | Blood
(BLO) | 60
seconds | 4% w/w 3,3',5,5'-tetramethy Ibenzidine (TMB); 6% w/w diisopropylbenzene dihydroperoxide; 90% w/w buffer and non-reactive ingredients | Detects free hemoglobin as low as 0.018-0.060 mg/dL or 5-10 Ery/µL in urine specimens with ascorbic acid content of <50 mg/dL. | | Nitrite
(NIT) | 60
seconds | 4.5% w/w
p-arsanilic acid;
95.5% w/w
non-reactive
ingredients | Detects sodium
nitrite as low as
0.05-0.1 mg/dL in
urine with a low
specific gravity
and less than 30
mg/dL ascorbic
acid. | | Leucocyte
- es
(LEU) | 120
seconds | 0.5% w/w derivatized pyrrole amino acid ester; 0.4% w/w diazonium salt; 32% w/w buffer; 67.1% w/w non-reactive ingredients | Detects
leukocytes as low
as 9-15 white
blood cells
Leu/µL in clinical
urine. | The performance characteristics of the Urine Reagent Strips have been determined in both laboratory and clinical tests. Parameters of importance to the user are sensitivity, specificity, accuracy and precision. Generally, this test has been developed to be specific for the parameters to be measured with the exceptions of the interferences listed. Please refer to the Limitations section in this package insert. Interpretation of visual results is dependent on several factors: the variability of color perception, the presence or absence of inhibitory factors, and the lighting conditions when the strip is read. Each color block on the chart corresponds to a range of analyte concentrations. ### **PRECAUTIONS** - For in vitro diagnostic use only. Do not use after the expiration date. - The strip should remain in the closed canister until use. - Do not touch the reagent areas of the strip. - Discard any discolored strips that may have deteriorated. - All specimens should be considered potentially hazardous and handled in the same manner as an infectious agent. - The used strip should be discarded according to local regulations after testing. #### STORAGE AND STABILITY Store as packaged in the closed canister either at room temperature (15-30°C). Keep out of direct sunlight. The strip is stable through the expiration date printed on the canister label. Do not remove the desiccant. Remove only enough strips for immediate use. Replace cap immediately and tightly. **DO NOT FREEZE.** Do not use beyond the expiration date. **Note:** Once the canister has been opened, the remaining strips are stable for up to 3 months. Stability may be reduced in high humidity conditions. ## SPECIMEN COLLECTION AND PREPARATION A urine specimen must be collected in a clean and dry container and tested as soon as possible. Do not centrifuge. The use of urine preservatives is not recommended. If testing cannot be done within an hour after voiding, refrigerate the specimen immediately and let it return to room temperature before testing. Prolonged storage of unpreserved urine at room temperature may result in microbial proliferation with resultant changes in pH. A shift to alkaline pH may cause false positive results with the protein test area. Urine containing glucose may decrease in pH as organisms metabolize the glucose. Contamination of the urine specimen with skin cleansers containing chlorhexidine may affect protein (and to a lesser extent, specific gravity and bilirubin) test results. # MATERIALS PROVIDED - 1. Strips. - 2. Package Insert. ### MATERIALS NEEDED BUT NOT PROVIDED 1. Specimen collection Container. 2.Timer. # **DIRECTION FOR USE** Remove the strip from the closed canister and use it as soon as possible. Immediately close the canister tightly after removing the required number of strip(s). Completely immerse the reagent areas of the strip in fresh, well-mixed urine and immediately remove the strip to avoid dissolving the reagents. See illustration 1 below. - While removing the strip from the urine, run the edge of the strip against the rim of the urine container to remove excess urine. Hold the strip in a horizontal position and bring the edge of the strip into contact with an absorbent material (e.g. a paper towel) to avoid mixing chemicals from adjacent reagent areas and/or soiling hands with urine. See illustration 2 below. - Compare the reagent areas to the corresponding color blocks on the canister label at the specified times. Hold the strip close to the color blocks and match carefully. See illustration 3 below. Note: Results may be read up to 2 minutes after the specified ### INTERPRETATION OF RESULTS Results are obtained by direct comparison of the color blocks printed on the canister label. The color blocks represent nominal values; actual values will vary close to the nominal values. In the event of unexpected or questionable results, the following steps are recommended; confirm that the specimens have been tested within the expiration date printed on the canister label, compare results with known positive and negative controls and repeat the test using a new strip. If the problem persists, discontinue using the strip immediately and contact your local distributor. # QUALITY CONTROL For best results, performance of reagent strips should be confirmed by testing known positive and negative specimens/controls whenever a new test is performed, or whenever a new canister is first opened. Each laboratory should establish its own goals for adequate standards of performance. ### LIMITATIONS **Note:** As with all diagnostic and therapeutic tests, all results must be considered with other clinical information available to the physician. **Blood:** A uniform blue color indicates the presence of myoglobin, hemoglobin or hemolyzed erythrocytes. Scattered or compacted blue spots indicate intact erythrocytes. To enhance accuracy, separate color scales are provided for hemoglobin and for erythrocytes. Positive results with this test are often seen with urine from menstruating females. It has been reported that urine of high pH reduces sensitivity, while moderate to high concentration of ascorbic acid may inhibit color formation. Microbial peroxidase, associated with urinary tract infection, may cause a false positive reaction. The test is slightly more sensitive to free hemoglobin and myoglobin than to intact erythrocytes. Nitrite: The test is specific for nitrite and will not react with any other substance normally excreted in urine. Any degree of uniform pink to red color should be interpreted as a positive result, suggesting the presence of nitrite. Color intensity is not proportional to the number of bacteria present in the urine specimen. Pink spots or pink edges should not be interpreted as a positive result. Comparing the reacted reagent area on a white background may aid in the detection of low nitrite levels, which might otherwise be missed. Ascorbic acid above 30 mg/dL may cause false negatives in urine containing less than 0.05 mg/dL nitrite ions. The sensitivity of this test is reduced for urine specimens with highly buffered alkaline urine. For accurate results, antibiotics should be discontinued for at least 3 days before the test is performed. A negative result does not at any time preclude the possibility of bacteruria. Negative results may occur in urinary tract infections from organisms that do not contain reductase to convert nitrate to nitrite; when urine has not been retained in the bladder for a sufficient length of time (at least 4 hours) for reduction of nitrate to nitrite to occur; or when dietary nitrate is absent. Leukocytes: The result should be read between 60-120 seconds to allow for complete color development. The intensity of the color that develops is proportional to the number of leukocytes present in the urine specimen. High specific gravity or elevated glucose concentrations (≥ 500 mg/dL) may cause test results to be artificially low. The presence of cephalexin, cephalothin, or high concentrations of oxalic acid may also cause test results to be artificially low. Tetracycline may cause decreased reactivity, and high levels of the drug may cause a false negative reaction. High urinary protein (≥ 500 mg/dL) may diminish the intensity of the reaction color. This test will not react with erythrocytes or bacteria common in urine. ### **BIBLIOGRAPHY** - 1. Free AH, Free HM. Urinalysis, Critical Discipline of Clinical Science. CRC Crit. Rev. Clin. Lab. Sci. 3(4): 481-531, 1972. - Yoder J, Adams EC, Free, AH. Simultaneous screening for rinary Occult Blood, Protein, Glucose, and pH. Amer. J. Med Tech. 31:285, 1965. - Shchersten B, Fritz H. Subnormal Levels of Glucose in Urine. JAMA 201:129-132, 1967. - McGarry JD, Lilly. Lecture, 1978: New Perspectives in the Regulation of Ketogenesis. Diabetes 28: 517-523 May, 1978. - Williamson DH. Physiological Ketoses, or Why Ketone Bodies? Postgrad. Med. J. (June Suppl.): 372-375, 1971. - Paterson P, et al. Maternal and Fetal Ketone Concentrations in Plasma and Urine. Lancet: 862-865; April 22, 1967. - Fraser J, et al. Studies with a Simplified Nitroprusside Test for Ketone Bodies in Urine, Serum, Plasma and Milk. Clin. Chem. Acta II: 372-378, 1965. - Henry JB, et al. Clinical Diagnosis and Management by Laboratory Methods, 18th Ed. Philadelphia. Saunders. - 396-397, 415, 1991. - Burtis CA, Ashwood ER. Tietz Textbook of Clinical Chemistry 2nd Ed. 2205, 1994. 10. Tietz NW. Clinical Guide to Laboratory Tests. W.B. Saunders Company. 1976. ATLAS Medical Ludwig-Erhard Ring 3 15827 Blankenfelde-Mahlow Germany Tel: +49 - 33708 - 3550 30 Email: Info@atlas-medical.com # PPI1604A01 Revision B (30.10.2021) | | • | | | |-----------------|--|-------------|------------------------------------| | REF | Catalogue Number | 1 | Temperature limit | | IVD | In Vitro diagnostic medical device | \triangle | Caution | | $\sqrt{\Sigma}$ | Contains sufficient for <n> tests and Relative size.</n> | | Consult instructions for use (IFU) | | LOT | Batch code | 1 | Manufacturer | | 8 | Do not re-use | \square | Use-by date | | D | Manufacturer fax number | | Do not use if package is damaged | | | Manufacturer
telephone number | M | Date of
Manufacture | | * | Keep away from sunlight | 宁 | Keep dry |